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A B S T R A C T

To guide building system retrofits for reducing building’s operational carbon footprint, a micro-genetic
optimization algorithm has been applied. The algorithm is integrated into the Vertical City Weather Generator
(VCWG) urban physics model. The model is applied to low-rise residential houses of Toronto, a cold Canadian
city, for annual estimations and reductions of electricity/gas consumption and retrofit cost from 2020 to
2100, every decade, under two Representative Concentration Pathway (RCP) climate change scenarios. The
building system configuration utilizes a solar thermal collector, photovoltaic collector, wind turbine, building
thermal energy storage, and heat pump. Fifteen building variables have been optimized. Compared to a base
building, the proposed retrofitted system reduces the electricity consumption by up to 61.71 [%] and the
gas consumption by up to 82.67 [%]. The annualized retrofit cost for a 20-year time horizon is about 10-
15 thousand Dollars. Some optimized variables are sensitive to the climate change scenario over a long
time horizon until 2100, which relate to the thermal energy storage system, phase change material, solar
thermal collectors (and the associated working fluid flow rates), solar heat gain coefficient, and roof albedo.
Other variables, relating to the ventilation/infiltration rates, building envelop thermal resistance, glazing
ratio, wind turbine size, and photovoltaic collectors, do not show such sensitivity. The optimization process
is computationally fast, and the solution obtained provides evidence for successful building system retrofits
toward energy and cost savings for the climate of Toronto.
1. Introduction

Buildings are known to consume close to 40 [%] of global energy
in the developed world [1]. Under a changing climate with global
warming and temperature rises (+0.5 to +3.5 [K] from 1986–2016
to the end of century in 2100), such energy dependence may even
exacerbate further in the future [2]. To fight buildings’ consequential
impact on the climate (via the emissions of GreenHouse Gases (GHGs)),
many policy makers, practitioners, and other stake holders advocate for
energy retrofits to divert the buildings’ dependence on fossil fuels or
the GHG emissions associated with the grid electricity. Such retrofits
target the reduction of GHG emissions via reducing the operational
carbon footprint of buildings. The retrofits typically involve an initial
investment in improving the existing building systems (such as envelop
thermal performance, air tightness, high efficiency boilers/furnaces,
etc.) or installation of new renewable/alternative energy systems (such
as photovoltaics/solar thermal collectors, heat pumps, thermal energy
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storage, etc.). The resulting energy savings for the retrofitted system
will reduce the GHG emissions, and the investment is characterized
with an annualized cost.

It is noteworthy to mention that building system retrofits usually
target the reduction of operational carbon emissions, as opposed to em-
bodied carbon emissions. Consideration of embodied carbon emissions
are more relevant for construction of new buildings, where choices of
the land use modification, use of construction materials, construction
methods, and building systems determine the embodied carbon foot-
print. In fact, there are tradeoffs between operational and embodied
carbon emissions of buildings [3].

Building retrofits present an underlying optimization problem. On
the one hand, a retrofitted building will achieve energy savings, which
should be maximized; on the other hand, an initial investment is
required for the retrofit, which should be minimized. The optimization
process shall find the most cost-effective way to save the greatest
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amount of energy consumption. This presents a challenge in retrofit
studies, which is the selection and sizing of building systems that result
in cost-effective energy savings [4,5]. Buildings are characterized with
too many variables and systems. Any modeling study that attempts
to find the absolutely best set of systems and variables will soon find
itself too computationally expensive, as there is a large set of variable
permutations necessary for such a model. For instance, consider 5
building features to be optimized and that each building feature can
adopt 5 values. This demands 55 = 3125 simulations to try all the
permutations. This highlights the importance of effective optimization
methods for building system retrofit studies.

1.1. Review of building optimization techniques

We provide a brief and selective review of building optimization
algorithms investigated during the past 20 years. The landmark study
by Wetter and Wright [6] performed numerical experiments on three
groups of algorithms: (1) direct search, (2) stochastic population-based,
and (3) gradient-based algorithms. It was understood since then that
direct search and gradient-based algorithms often fail for building
optimization problems, in which the objective function(s) have dis-
continuities. The following studies for the next 2 decades focused on
stochastic population-based algorithms. The key trade off for such
algorithms is between the computational cost (i.e. number of iterations)
and the probability that a nearly global optimum solution is found.
Yet, convergence to a global optimum solution cannot be established
formally for such methods [7].

A common optimization technique is to transform a set of objective
functions (e.g. electricity consumption, gas consumption, and cost) to a
single overall objective function using the weighted sum approach [5,
8–10]. Then the overall objective function may be minimized using
variations of stochastic population-based algorithms such as particle
swarm [11], ant colony [9,10], or evolutionary [12] algorithms. The
majority of optimization studies use the EnergyPlus building scale
model for their investigations.

In the Particle Swarm Optimization (PSO) methods, an optimum
solution is found by iterative movement of a population of solutions
(particles) along the search space, for which the movement is charac-
terized by each particle’s position and velocity. Each particle’s motion is
influenced by its best known local position though it is also maneuvered
toward the best known positions in the entire search space. These best
positions are updated as better positions are found by other particles. It
is expected that particles will gradually move toward the best positions
(solutions). Building PSO algorithms explored by Wetter and Wright [6]
involved 16 particles and 20 generations. They required up to 195–712
iterations to optimize a problem with 13 variables. They showed the
best reduction in the objective function but required a large number of
iterations. Hybrid PSO algorithms are sometimes combined with search
methods (such as the Hook Jeeves (HJ)). PSO-HJ methods use PSO as
the main search algorithm, which is then refined to approach the global
optimum using the HJ algorithm [7]. Wetter and Wright [6] found
these algorithms requiring 653–889 iterations. Building PSO-HJ algo-
rithm explored by Kämpf et al. [7] required close to 3400 iterations to
optimize 13 variables. Building PSO-HJ algorithms explored by Bamdad
et al. [9,10] required up to 4000 iterations to optimize 9 variables.

In the ant colony optimization methods, artificial ants (i.e. simula-
tion agents) locate optimum solutions by moving through the variable
space that represents all potential solutions. Real ants lay traces to
direct each other to resources (e.g. food) while exploring the natural
environment. The simulated ants likewise record their positions and the
quality of the solutions, so in later simulations more ants locate them-
selves for better solutions. The algorithm aims to search for an optimal
path in a graph, based on the behavior of ants seeking a path between
2

their colony and a resource of food. For building optimizations, the
Ant Colony Optimization algorithm for Mixed Variables (ACOMV) has
been developed [9,10]. Ant colony optimization methods are suggested
to be 50 [%] faster than particle swarm optimization methods, but they
still require many iterations, up to 4000 for 9 variables [9].

In the evolutionary optimization methods (Genetic Algorithms
(GA)s), mechanisms inspired by biological evolution, such as repro-
duction, mutation, recombination, and selection are used. Iterative
solutions to the optimization problem play the role of individuals in
a population, and a fitness function determines the quality of the
solutions. The evolution of the population then takes place after the
repeated application of the evolutionary mechanisms. The building
GA explored by Wetter and Wright [6] required a population of 14
solutions and 50 generations of subsequent solutions. It required up
to 853–592 iterations. Wetter and Wright [6] found that GAs could
require fewer iterations and yet land near the global optimum solution.
However, they may risk not finding a nearly global optimum if their
number of iterations are too few. The building GA explored by Kämpf
et al. [7] required close to 3000 iterations to optimize 13 variables. The
building GA explored by Gunay et al. [13] required a population of 75
solutions and 8 generations (600 iterations) to optimize 8 variables.
They suggested that GAs handle problems with multi-modal objective
functions better than PSO algorithms, yet GAs can fail if the number of
variables reach beyond 20. For building optimizations, Tuhus-Dubrow
and Krarti [14] and Bamdad et al. [9] have found that GAs take fewer
iterations than PSO methods to find a solution in the proximity of the
global optimum. The GA explored by Mukkavaara and Shadram [3]
required 4920 iterations to optimize 9 variables. Recently, the micro-
genetic optimization method has been proposed that requires fewer
iterations for models of high computational cost [12].

1.2. Research gaps

Many building energy studies solely focus on standard building
features, such as envelop thermal resistance, glazing ratio, building
orientation, ventilation/infiltration rate, and as such for the current
and future climates [9–11,15,16]. However, fewer studies explore the
selection and sizing of renewable/alternative energy systems, such as
photovoltaic/solar thermal collectors, building thermal energy storage
systems, phase change materials, heat pumps, and the like, particularly
for cold climate of Canada [5,17–23].

Optimization techniques that are based on common particle swarm,
ant colony, or genetic methods are generally very computationally ex-
pensive [11]. So it is imperative to find alternative stochastic
population-based optimization methods that can provide nearly global
optimum solutions with fewer iterations.

Typical modeling software used for assessment of building system
retrofits are EnergyPlus, Transient System (TRNSYS) simulation tool,
and Integrated Environmental Solutions Virtual Environment (IESVE).
These tools are effective for assessment of standard building features
and alternative/renewable energy systems [24,25]. However, they do
not account for the interaction between buildings and the surround-
ing outdoor conditions with sufficient detail and accuracy (e.g. shad-
ing/wind drag effect from other buildings, evapotranspiration from
vegetation, and impact of a building’s waste heat on its energy con-
sumption). Alternative modeling tools can be used to fill this gap. For
instance, the Urban Weather Generator (UWG) [26–29] and the Vertical
City Weather Generator (VCWG) [5,30,31] can be used to account for
the feedback interaction of a building with the outside environment,
considering the exchanges of momentum, energy, and humidity; or the
integrated City Fast Fluid Dynamics (CityFFD), an urban-scale fast fluid
dynamics model for microclimate modeling, and City Building Energy
Model (CityBEM) allow for local exchanges of aerodynamics and heat

transfer processes between the two models [32].
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1.3. Objectives

This study aims to fill the aforementioned research gaps by a few
novel investigations: (1) it attempts to optimize a list of 15 build-
ing variables beyond conventional envelop and operating variables
(i.e. envelop thermal, glazing, infiltration, and ventilation variables) by
including variables pertaining to renewable/alternative energy systems
for cold climate (i.e. solar thermal, photovoltaics, wind, and ther-
mal energy storage variables); (2) it employs a comprehensive urban
physics model that not only accounts for building scale systems, but
also accounts for the feedback interaction of building systems with the
outside environment (e.g. presence of other buildings and vegetation)
in detail; (3) it applies a micro-genetic optimization algorithm to arrive
at a nearly optimum solution much faster than conventional building
optimization algorithms.

A typical single-detached low-rise two-storey residential house is
considered in the climate of Toronto, Canada. Single-detached residen-
tial houses account for 52.6% and 56% of residential building stock
in Canada and Ontario, respectively [33]. Further 71% of such houses
use natural gas for their heating needs in Ontario [33]. This building
type is representative in the Canadian context, while in other countries
it may account for a lower or higher fraction of residential building
stock. This typical housing stock is far less energy efficient than houses
conforming to high standards [34,35]. The poor energy performance
can be attributed to key building envelop features. For instance, typical
standard thermal resistances in ASHRAE climate zone 5 for walls
and roofs are 3.5 and 5.5 [m2KW−1], while the corresponding values
according to the Passive House Institute are 7.0 and 11.5 [m2KW−1].
ikewise, typical new construction houses in Ontario experience an
nfiltration rate of 2.5–3.5 [ACH], while the Passive House Institute
equires a stringent air tightness of 0.6 [ACH] [36].

The energy consumption of the house is assessed from 2020 to 2100
nder two Representative Concentration Pathways (RCPs) of 4.5 and
.5 [Wm−2]. Ideally, based on the Intergovernmental Panel on Climate
hange (IPCC)’s Sixth Assessment Report (AR6), Socioeconomic Path-
ays (SSPs) should be considered, since they make projections in popu-

ation, urbanization, rate of technology development, rather than RCPs,
hat primarily focus on abundance of greenhouse gas emissions [37].
owever, many regional climate model data products (including the
ne used in this study) are presently only available based on the Fifth
ssessment Report (AR5)’s RCP scenarios, so RCP scenarios are used in

his study.
The Vertical City Weather Generator (VCWG v1.5.0) urban physics

odel is developed and used with a micro-genetic optimization al-
orithm to model the residential house by sizing and selecting 15
uilding variables, including standard building features and renew-
ble/alternative energy systems for the optimization. To force VCWG
ith weather files, the Vatic Weather File Generator (VWFG v1.0.0)

s used. The study performs simulations of annual energy consump-
ion and retrofit cost for every decade from 2020 to 2100 using one
epresentative year for each decade (i.e. for years 2020, 2030, 2040,
tc.). The optimized solutions are analyzed and interpreted for their
ensitivity to time and the future climate change scenario.

Section 2 provides the methods of the study. It begins by Section 2.1,
hich introduces the urban physics model. It follows by Section 2.2,
hich introduces the retrofitted systems considered. It then provides
ection 2.3 that describes the economics analysis. It continues with
ection 2.4, which provides the greenhouse gas emissions savings
nalysis. It follows by Section 2.5 that describes the future weather
iles. In Section 2.6, it describes the micro-genetic optimization algo-
ithm. Section 3 provides the results and discussion. It begins with
ection 3.1 to evaluate the base building model against observations of
nergy consumption. In Section 3.2, the base building electricity and
as consumptions are provided. In Section 3.3 the retrofitted building
verall/individual objective functions and GHG emissions savings are
3

iscussed. In Section 3.4 the retrofitted building variables are discussed,
with their sensitivity to time and future climate scenarios. Finally, the
study provides the conclusions in Section 4. A rich set of Appendices
in Appendix are provided to demonstrate all the detailed equations and
models used by the study. These include the retrofitted building systems
and economics models.

2. Methods

2.1. The Urban Physics Model (UPM)

The Vertical City Weather Generator (VCWG) is a computationally-
fast Urban Physics Model (UPM) at micro-scale. It calculates the tem-
poral and vertical variation of outdoor urban climate variables, the
temporal variation of indoor climate variables, indoor/outdoor sur-
face temperatures, building performance metrics such as space heat-
ing/cooling loads, space/water heating loads, domestic electricity use,
and natural gas/electricity consumption.

Numerous versions of VCWG have been developed. VCWG v1.3.2 is
the original version [30]. It was enabled with renewable and alternative
energy integration in VCWG v1.4.5 and v1.4.6 [5]. The main difference
between v1.4.5 and v1.4.6 is that v1.4.5 requires use of all renewable
and alternative energy features, while v1.4.6 permits utilization of
solar photovoltaics and wind energy only, in addition to permitting
an overall simulation including solar thermal energy, energy storage,
heat pumps, and phase change materials. In this work VCWG v1.4.6
is employed and further developed into VCWG v1.5.0, which includes
a micro-genetic optimization feature. VCWG v2.0.0 is another version,
which integrates hydrological processes [31] in addition to the original
model features of VCWG 1.3.2.

As shown in Fig. 1, VCWG v1.5.0 is comprised of many sub-models:
a rural model, a one-dimensional urban vertical diffusion model, a
radiation model, a building energy model, and surface energy balance
models. VCWG is forced with a weather file from a rural site at the
vicinity of the urban area. The rural model predicts the vertical varia-
tion of potential temperature, specific humidity, and friction velocity
at 10 m a.g.l. The rural model also calculates a horizontal pressure
gradient. The rural model outputs are imposed on the urban vertical
diffusion model, which computes the vertical transport of potential
temperature, momentum, specific humidity, and turbulence kinetic
energy. This vertical diffusion model is integrated to the radiation and
building energy models utilizing a two-way interaction scheme. The
aerodynamic and thermal effects of urban surfaces, surface vegetation,
and trees are considered. The feedback interaction coupling scheme
among the building energy model, radiation model, and the urban one-
dimensional vertical diffusion model is aimed to update the boundary
conditions, surface temperatures, and the source/sink terms in the
transport equations in successive time step iterations. Table 1 lists the
input parameters used for the VCWG simulations [5].

2.2. Retrofitted building systems

This study considers an active thermal energy storage paradigm.
Fig. 2 shows the building systems as a combination of Solar Ther-
mal (ST) collector, PhotoVoltaic (PV) collector, Wind Turbine (WT),
Building Integrated Thermal Energy Storage (BITES) system, Phase
Change Material (PCM), Heat Pump (HP), and heat recovery systems
in addition to the use of ground thermal energy. A ground-source
HP, which exchanges heat with the building foundation, supplements
the conventional space heating (natural gas furnace) and cooling (air
conditioning) systems. The BITES is charged and discharged using
the ST, HP, exhaust air, supply water, or gray water. The BITES is
assumed to be built using concrete, which is commonly used as the
foundation structure [22,38]. The BITES system acts as either a cold or
warm reservoir of heat for the HP system. A PCM is used to modulate
the BITES temperature if BITES temperatures are close to the melting

temperature of PCM [39]. Water can be preheated using the BITES
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Fig. 1. Illustration of the Vertical City Weather Generator (VCWG v1.5.0) model and the constituent sub-models.
Table 1
List of input parameters used in VCWG v1.5.0 for model exploration in Toronto.

Parameter Units Symbol Toronto

Rural Latitude [°N] latrur 43.649889
Rural Longitude [°E] lonrur −80.121909
Urban Latitude [°N] lat 43.632580
Urban Longitude [°E] lon −79.581630
Average buildings height [m] 𝐻avg 6
Width of canyon [m] 𝑤𝑥 = 𝑤y = 𝑤 30
Building width to canyon width ratio [-] 𝑏x∕𝑤x = 𝑏y∕𝑤y = 𝑏∕𝑤 0.46
Leaf Area Index [m2m−2] 𝐿𝐴𝐼 0.72–1.00
Tree height [m] ℎt 5
Tree crown radius [m] 𝑟t 1.8
Tree distance from wall [m] 𝑑t 5
Building type [-] – Mid-rise apartment
Urban albedos (roof, ground, wall, vegetation) [-] 𝛼R , 𝛼G , 𝛼W , 𝛼V 0.10, 0.13, 0.23, 0.23
Urban emissivities (roof, ground, wall, vegetation) [-] 𝜀R , 𝜀G , 𝜀W , 𝜀V 0.95, 0.95, 0.91, 0.96
Ground aerodynamic roughness length [m] 𝑧0G 0.02
Roof aerodynamic roughness length [m] 𝑧0R 0.02
Ground vegetation cover fraction [-] 𝛿𝑠 0.5
Rural overall albedo [-] 𝛼rur 0.14
Rural overall emissivity [-] 𝜀rur 0.95
Rural aerodynamic roughness length [m] 𝑧0,rur = 0.1ℎrur 0.2
Rural roughness length for temperature [m] 𝑧𝛩,rur = 0.1𝑧0,rur 0.02
Rural roughness length for specific humidity [m] 𝑧𝑄,rur = 0.1𝑧0,rur 0.02
Rural zero displacement height [m] 𝑑rur = 0.5ℎrur 1
Rural Bowen ratio [-] 𝛽rur 0.5
Tree Bowen ratio [-] 𝛽tree 0.5
Vertical resolution [m] 𝛥𝑧 1
Time step [s] 𝛥𝑡 60
Canyon axis orientation [°N] 𝜃can 0
system if its temperature is greater than the city water temperature to
be heated. Ground thermal energy can flow between the deep soil and
the BITES system. The model assumes that any electricity produced by
the PV or WT systems are net metered to the grid, without requiring
electricity storage. The Net Metering Regulation (O. Reg. 541/05)
under the Ontario Energy Board Act of 1998 permits met metering for
renewable energy up to a capacity of 500 [kW] [40]. Appendix A.1
details the equations that describe the retrofitted systems in VCWG [5].

2.3. Economics analysis

The costs associated with building system retrofits is an important
objective function to be reduced. Standard prEN 15459-1 (Economic
evaluation procedure for energy systems in buildings) provides the
Global Cost approach for evaluation of relative economic feasibility
of building system configurations [4,41]. In this approach, all ex-
penses/revenues related to building system configurations (such as
initial investment, operation and maintenance, fuel/electricity cost, and
4

salvage) are considered. The method accounts for a discounting rate
over an investment period of 𝑁 = 20 years. The time value of money
can be considered using three alternative cost metrics: (1) present
value of the global cost, which evaluates all future costs discounted
to the present time; (2) annualized cost, which disperses future costs
to an equal annual value, considering the time value of money; and
(3) pay-back period, which provides the number of years it takes
for the marginal initial cost of a building retrofit configuration to be
balanced by the accumulation of revenue from annual fuel/electricity
savings [5]. In this study we report the annualized cost as the main
economic metric. Appendix A.2 details the equations that describe the
economics model in VCWG [5].

2.4. Greenhouse gas emissions savings analysis

The Greenhouse Gas (GHG) emissions savings as a result of
retrofitting the building systems can be calculated by quantifying the
savings in natural gas and electricity consumptions, compared to the
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Fig. 2. System configuration to reduce building sensible heating/cooling loads and water heating load via integration of Solar Thermal (ST), PhotoVoltaic (PV), Wind Turbine
(WT), Building Integrated Thermal Energy Storage (BITES) system, Phase Change Material (PCM), Heat Pump (HP), and heat recovery systems as well as the utilization of ground
thermal energy.
base case. Further, the grid GHG emissions intensity should be factored
in the calculation. The savings in natural gas can be calculated using

𝐺𝑠𝑎𝑣𝑒 = [𝐺ℎ𝐵 + 𝐺𝑤ℎ𝐵 − (𝐺ℎ + 𝐺𝑤ℎ)]𝐴𝑏𝑙𝑑𝑁, (1)

where 𝐺ℎ𝐵 and 𝐺𝑤ℎ𝐵 [m3m−2] are the natural gas consumption for
base case for space and water heating, respectively, and 𝐺ℎ and 𝐺𝑤ℎ
[m3m−2] are the natural gas consumption for the retrofitted system for
space and water heating, respectively. The savings in GHG emissions,
due to savings in natural gas consumption, is

𝐺𝐻𝐺𝐺𝑠𝑎𝑣𝑒 = 𝐺𝑠𝑎𝑣𝑒𝜌CH4

𝑀𝑊CO2

𝑀𝑊CH4

, (2)

where 𝜌CH4
= 0.668 [kg − CH4m−3] is the density of natural gas

(methane), and 𝑀𝑊CO2
= 44 [g − CO2mole−1] and 𝑀𝑊CH4

= 16
[g − CH4mole−1] are molecular weights of CO2 and methane, respec-
tively.

The savings in electricity consumption can be calculated using

𝐸𝑠𝑎𝑣𝑒 = [𝐸𝑐𝐵 + 𝐸𝑑𝐵 − (𝐸𝑐 + 𝐸ℎ + 𝐸𝑑 − 𝐸𝑝𝑣 − 𝐸𝑤𝑡)]𝐴𝑏𝑙𝑑𝑁, (3)

where 𝐸𝑐𝐵 and 𝐸𝑑𝐵 [kW − hrm−2] are the electricity consumption due
to space cooling and domestic use for the base case, 𝐸𝑐 , 𝐸ℎ, and 𝐸𝑑
[kW − hrm−2] are the electricity consumption for the retrofitted system
due to space cooling, space heating, and domestic use, respectively,
and 𝐸𝑝𝑣 and 𝐸𝑤𝑡 [kW − hrm−2] are electricity produced using the PV
and WT, respectively. The savings in GHG emissions, due to savings in
electricity consumption, is

𝐺𝐻𝐺𝐸𝑠𝑎𝑣𝑒 = 𝐸𝑠𝑎𝑣𝑒𝐸𝐼𝐸 , (4)

where 𝐸𝐼𝐸 = 0.04 [kg − CO2kW − hr−1] is the grid electricity emissions
factor in Ontario.

2.5. Future climate weather files

The Vatic Weather File Generator (VWFG) is a computationally-
fast statistical downscaling model to generate future weather files for
5

building simulations [42]. This approach is based on the morphing
technique, where the statistics of future weather variables (e.g. mean
and standard deviation) are matched with historical weather files [43].
The statistical downscaling model uses data from three time periods to
generate future weather files: the historical time period (1980–1999),
the validation time period (2007–2020), and the future time period
(2021–2100). The historical and validation weather files are retrieved
from ERA5 reanalysis products [44]. The format for the weather files
is the EnergyPlus Weather (EPW). The historical, validation, and future
Climate Model (CM) records are retrieved from the CanRCM4 regional
climate model. CanRCM4 is Canada’s primary and current regional
climate model [45]. It is known to exhibit warm (temperature) and wet
(precipitation) biases [46]. VWFG removes the biases for temperature,
wind, pressure, and radiation fluxes within CanRCM4 using statistical
corrections [42]. VWFG (1) applies a bias correction process to the
validation/future weather variables to improve the accuracy of the
downscaling method [47]; (2) considers weighting of key weather
variables to match validation/future and historical weather conditions
[48–50]; and (3) corrects the monthly mean and standard deviation
of validation/future weather variables given the mean and standard
deviation of weather variables in the regional climate model [43].
The climate of Toronto, Canada, is analyzed for two Representative
Concentration Pathway (RCP) scenarios of 4.5 and 8.5 [Wm−2].

2.6. Micro-genetic optimization

The micro-genetic optimization method is applied from Park and
Park [12]. Most common genetic optimization algorithms use large
populations up to 100 and apply cross-over, mutation, crowding, and
other probabilistic processes to create new generations [3]. However,
the micro-genetic optimization method uses a small population size
(about 5), applies the cross-over/mutation processes, and updates the
population via inner loop iterations (using offsprings to make the next
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Table 2
Optimization variables with minimum value, maximum value, and variation interval.

Symbol Units Description Minimum Maximum Interval

𝑉𝑏𝑖𝑡𝑒𝑠 [m3m−2] Volume of BITES 0.01 0.20 0.01
𝛼𝑅 [-] Roof Albedo 0.1 0.7 0.05
�̇�𝑠𝑡,𝑓 [kgs−1m−2] Working Fluid Flow Rate for ST 0.0001 0.002 0.0001
𝐴𝑠𝑡 [m2m−2] Collector Area for ST 0.2 0.6 0.05
𝑅𝑟𝑜𝑜𝑓 [m2KW−1] Roof Thermal Resistance 5.5a 8 0.5
𝑉𝑝𝑐𝑚 [m3m−2] Volume of PCM 0.01 0.20 0.01
𝑉𝑖𝑛𝑓 [ACH] Infiltration Rate 0.5 3.5a 0.5
𝑅𝑤𝑎𝑙𝑙 [m2KW−1] Wall Thermal Resistance 3.5a 7.5 0.5
𝑉𝑣𝑒𝑛𝑡 [Ls−1m−2] Ventilation Rate 0.3a 0.6 0.05
𝐺𝑅 [-] Glazing Ratio 0.1 0.5a 0.05
�̇�ℎ𝑒,𝑠𝑡 [kgs−1m−2] Air Flow Rate for ST 0.001 0.02 0.001
𝑇𝑚𝑒𝑙𝑡 [K] Melting Temperature of PCM 290 310 2
𝐴𝑤𝑡 [m2m−2] Swept Area of WT 0.05 0.2 0.05
𝑆𝐻𝐺𝐶 [-] Solar Heat Gain Coefficient (𝑆𝐻𝐺𝐶) 0.1 0.7a 0.1
𝐴𝑝𝑣 [m2m−2] Collector Area for PV 0.1 0.6 0.1

aBase building configuration.
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eneration) and outer loop iterations (re-sampling the search space to
ake the next generation).

Table 2 shows the variable space for optimization. For each of
he 15 variables, the minimum value, maximum value, and varia-
ion interval is specified. The typical two-storey residential house in
oronto is characterized using Natural Resources Canada’s definition
or its equivalent Energy Use Intensity (EUI) being greater than 225
ekW − hrm−2year−1] [33]. Such a house is characterized by codes and
tandards for envelop thermal resistance (roof, wall, and window),
nfiltration rate, ventilation rate, glazing ratio, Solar Heat Gain Coeffi-
ient (𝑆𝐻𝐺𝐶), thermal efficiency of its heating devices (furnace and
ot water heater), and Coefficient of Performance (𝐶𝑂𝑃 ) for its air

conditioning. Except for thermal efficiency and 𝐶𝑂𝑃 , the other building
system variables mentioned above are optimized in this study. Other
variables are optimized that are related to renewable energy systems
such as solar thermal energy, electricity generated using photovoltaic
panels, and electricity generated using wind turbines. In addition, other
variables are optimized that are related to alternative energy systems
such as building integrated thermal energy storage and phase change
materials. The code/standard compliant variables are listed in Table 2
as either the minimum (for thermal resistance and ventilation) or
maximum (for infiltration, 𝑆𝐻𝐺𝐶, and glazing ratio) values for each
range.

Various building standards have been used to set the ranges for the
optimization variables. These standards include NECB [51], ASHRAE
62.1 [52], ASHRAE 62.2 [53], ASHRAE 90.1 [54], and ASHRAE 90.2
[55].

Regarding thermal storage of heat, the BITES system is assumed
to be constructed with concrete, which is part of the pre-existing
foundation of the residential building. The PCM is assumed to be made
of inorganic salt hydrates, which have melting temperatures close to
ambient conditions. However, it is non-trivial what quantity and at
what melting temperature the PCM characteristics will be optimum.

Regarding the envelop thermal properties, the roof albedo is set to
a wide range of values since the optimum value is not trivial. It is not
known a priori which albedo will result in overall energy savings for
the Canadian climate. On the one hand, high albedos are desirable in
the Summer season to reduce the building cooling load. On the other
hand, low albedos may be desired in the Winter season to reduce the
building heating load. The roof thermal resistance is determined using
Table 5.5-5 in ASHRAE 90.1 [54] and Table 3.2.2.2 in NECB [51]. The
wall thermal resistance is determined using Table 5.5-5 in ASHRAE
90.1 [54] and Table 3.2.2.2 in NECB [51].

Regarding the use of renewable energy, the optimization method
shall determine the optimum value of ST collector area, PV collector
area, and WT swept area. Further, the mass flow rate of the working
fluid in ST is not trivial. High mass flow rates will result in large
amounts of heat collection from the ST system, but at the expense of
6

a

lower temperatures; on the other hand, low mass flow rates will result
in harnessing solar thermal energy at higher temperatures, but at the
expense of lower heat quantities. A similar argument can be put forth
for the mass flow rate of air in the ST heat exchanger, which governs the
temperature and the rate, at which solar thermal energy is transferred
to the BITES system.

Regarding indoor/outdoor air exchange, the infiltration rate is in-
ferred via Sentence C3.5.5.3 in ASHRAE 90.1 [54] and Sentence 6.3.2
in ASHRAE 90.2 [55]. The ventilation rate is determined from Table
6.1 in ASHRAE 62.1 [52] and Table 4-1b in ASHRAE 62.2 [53].

Regarding windows’ configuration, the Glazing Ratio is inferred
from Table 5.5-5 in ASHRAE 90.1 [54] and Table A-3.2.1.4(1) in
NECB [51]. The Solar Heat Gain Coefficient (𝑆𝐻𝐺𝐶) is determined us-
ng Table 5.5-5 in ASHRAE 90.1 [54], Table 6-2 in ASHRAE 90.2 [55],
nd Table 3.2.2.3 in NECB [51]

Fig. 3 shows the schematic for the algorithm of the micro-genetic
ptimization method, and Fig. 4 shows the schemes used to create a
ew population. The algorithm consists of two loops: the inner and
uter loops. The inner loop uses the same parent population with
uilding variables (genes) to create new offsprings, while the outer
oop samples new parents using a uniform random generator for each
uilding variable (gene). At the end of each iteration, the total gas con-
umption 𝐺 [m3m−2] and total electricity consumption 𝐸 [kW − hrm−2]
re computed via

𝐺 = 𝐺ℎ + 𝐺𝑤ℎ, (5)

= 𝐸ℎ + 𝐸𝑐 + 𝐸𝑑 − 𝐸𝑝𝑣 − 𝐸𝑤𝑡, (6)

here 𝐺ℎ and 𝐺𝑤ℎ [m3m−2] are gas consumption for space and water
eating, respectively, 𝐸ℎ, 𝐸𝑐 , and 𝐸𝑑 [kW − hrm−2] are electricity
onsumption for space heating, space cooling, and domestic use, respec-
ively, and 𝐸𝑝𝑣 and 𝐸𝑤𝑡 [kW − hrm−2] are electricity generated using PV
nd WT, respectively.

At the end of each iteration, a fitness function is computed for each
ndividual in the population by a weighted sum of three objective func-
ions. This function is calculated by normalizing and equal-weighting
f total gas consumption 𝐺 [m3m−2], total electricity consumption 𝐸
kW − hrm−2], and marginal annualized cost 𝐶 [$] [8]

= 𝑤𝐺
𝐺
𝐺0

+𝑤𝐸
𝐸
𝐸0

+𝑤𝐶
𝐶
𝐶0

(7)

where 𝑤𝐺 = 𝑤𝐸 = 𝑤𝐶 = 1
3 in this study and 𝐺0 [m3m−2], 𝐸0

kW − hrm−2], and 𝐶0 [$] are normalizing values taken as the solution
f the first iteration of the optimization process. The normalization
s necessary to avoid letting the objective function with the highest
elative value in scale to dominate the other objective functions. Cer-
ainly, the weights can be changed if more emphasis shall be placed
n reducing an objective function. For instance 𝑤𝐺 = 0.2, 𝑤𝐸 = 0.2,
nd 𝑤 = 0.6 will emphasize on minimizing the marginal annualized
𝐶
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Fig. 3. The algorithm for the micro-genetic optimization method.
cost, rather than minimizing total gas and electricity consumptions. It
must be noted the GHG emissions saving is not explicitly considered as
an objective function. However, the combination of gas and electricity
consumption, implicitly, consider the GHG emissions saving. In other
words, reducing both gas and electricity consumption is equivalent to
GHG emissions savings.

As shown in Fig. 4, the elite individual is the individual with the
lowest fitness function. This individual is preserved for the subsequent
population, regardless of whether the inner or outer loops are executed.
The individual with the highest fitness function will be discarded. As
shown in the figure, when the inner loop is executed, the elite plus
three surviving individuals form two sets of parents. Their genes are
crossed at an arbitrary point to create four new offsprings, which form
the population for the next iteration. When the outer loop is executed,
the elite is kept, while four new individuals are randomly sampled to
create a new population for the next iteration.

The inner and outer loops are controlled by six loop variables. There
are minimum (𝐼𝑚𝑖𝑛,𝑖𝑛𝑛𝑒𝑟 = 2) and maximum (𝐼𝑚𝑎𝑥,𝑖𝑛𝑛𝑒𝑟 = 6) number
of iterations for the inner loop. There are minimum (𝐼 = 10)
7

𝑚𝑖𝑛,𝑜𝑢𝑡𝑒𝑟
and maximum (𝐼𝑚𝑎𝑥,𝑜𝑢𝑡𝑒𝑟 = 12) number of iterations for the outer loop.
Further, to check for convergence in each loop, the norm difference
between the two successive lowest fitnesses are computed. These fitness
values are associated with the elite individual for the two successive
iterations, for either the inner or outer loops. The norm difference for
fitness 𝐹 is given by

𝑁𝐹 =
|𝐹 𝑛 − 𝐹 𝑛−1

|

𝐹 𝑛−1
(8)

where 𝑛 − 1 and 𝑛 refer to two successive iteration numbers. The
convergence threshold for the norm difference is 𝑁𝐹 ,𝑡,𝑖𝑛𝑛𝑒𝑟 = 0.03 for
the inner loop and 𝑁𝐹 ,𝑡,𝑜𝑢𝑡𝑒𝑟 = 0.001 for the outer loop. The six loop
control variables are determined by trial and error. In a sensitivity
study (now shown), we found that for each case a sample of 3 runs,
with a total number of optimization iterations of about 30, result in
mean individual objective functions (gas consumption, electricity con-
sumption, and cost) that do not change more than 5 [%] in successive
iterations. Even though convergence cannot be established formally
for population-based stochastic optimization algorithms, this provide
evidence that 3 runs and an overall number of optimization iterations
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Fig. 4. The schemes used to create a new population for the micro-genetic optimization algorithm: inner iteration with gene crossing and outer iteration with sampling new
individuals for the population.
Table 3
Micro-gnetic optimization algorithm control variables.

Symbol Definition Value

𝑤𝐺 Objective function weighing factor for gas
consumption

1/3

𝑤𝐸 Objective function weighing factor for electricity
consumption

1/3

𝑤𝐶 Objective function weighing factor for marginal
annualized cost

1/3

𝐼𝑚𝑖𝑛,𝑖𝑛𝑛𝑒𝑟 Minimum inner iterations 2
𝐼𝑚𝑎𝑥,𝑖𝑛𝑛𝑒𝑟 Maximum inner iterations 6
𝐼𝑚𝑖𝑛,𝑜𝑢𝑡𝑒𝑟 Minimum outer iterations 10
𝐼𝑚𝑎𝑥,𝑜𝑢𝑡𝑒𝑟 Maximum outer iterations 12
𝑁𝐹 ,𝑡,𝑖𝑛𝑛𝑒𝑟 Convergence threshold for inner loop 0.03
𝑁𝐹 ,𝑡,𝑜𝑢𝑡𝑒𝑟 Convergence threshold for outer loop 0.001

beyond 30 result in a nearly global optimized solution. These conditions
are met given the algorithm control variable settings. Table 3 shows the
control variables for the micro-genetic optimization algorithm.

3. Results and discussion

3.1. Evaluation of the base building model

ASHRAE Standard 140 offers a comprehensive method of test for
8

the evaluation of building energy analysis computer programs [56].
The standard develops three philosophies of testing: (1) empirical
validation, (2) analytical verification, and (3) comparative model-
ing. Many building variables can be targeted for such evaluation,
such as annual heating/cooling loads, peak heating/cooling loads,
minimum/maximum indoor temperature, and gas/electricity consump-
tion [57]. For our study the building energy metrics involving consump-
tion/generation of electricity and consumption of gas are paramount,
as they relate to the operational GHG emissions of the building. In fact,
ASHRAE Guideline 14 targets the modeling of building energy metrics,
and it considers a model calibrated if it can predict the energy metrics
of a building within ±5 [%] of the observations [58]. The building
energy model within VCWG has been tested empirically against many
observations.

Bueno Unzeta [59] compared daily-average building consumption
of electricity and gas as they were predicted using the Urban Weather
Generator (UWG) software against observations in Toulouse (France)
for a mid-rise apartment in 2005. He found good agreement between
the model and the observations. The original building energy model
within UWG is the same as the model within VCWG.

To validate VCWG predictions of gas and electricity consumption
against metered data, a survey program has begun by the authors.
Single-detached residential house owners in the Greater Toronto Area
(GTA) are asked to provide information about their monthly energy
bills (gas and electricity) for a minimum of 1 year. Seven houses have
participated in this survey so far, and, for each house, up to 3 years

of monthly data are provided in 2020, 2021, and 2022. Corresponding
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Fig. 5. Monthly consumption of gas [m3m−2] and electricity [kW − hrm−2] per building footprint area as predicted by VCWG and 7 metered single-detached residential houses
in the Greater Toronto Area (GTA) in 2020, 2021, and 2022; the main legend shows the mean monthly consumption; the pale blue (VCWG) and red (Survey) regions show 1
standard deviation of the consumption for either the model or observations, respectively; (a) Gas and (b) Electricity. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 6. Mean diurnal variation of hourly PV power [Wm−2] per building footprint area as predicted by VCWG and measured at the Coop Housing building (University of Guelph);
simulations are conducted for 2022; the main legend shows the mean hourly PV power for a duration of a month; the pale blue (VCWG) and red (Coop Housing) regions show
1 standard deviation of the PV power for either the model or observations, respectively; (a) January, (b) April, (c) July, and (d) October. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
VCWG simulations have been run for a typical single-detached house
introduced in Section 2.6 as the base building (without retrofits) for
the same three years. The base building does not feature any of the
alternative or renewable energy systems (PV, WT, HP, BITES, PCM, and
energy recovery). Fig. 5 shows the comparison. The relative errors in
the mean annual gas and electricity consumptions are 5.2 [%] and −3.8
9

[%], respectively. The authors particularly noted that some houses use
more electricity in the winter (possibly due to auxiliary electrical heat-
ing), while other houses use more electricity in the summer (possibly
due to air conditioning).

We further tested the limited aspect of renewable electricity gen-
eration by the PV system as predicted by VCWG and compared it to
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Fig. 7. Base building energy consumption under two RCP scenarios of 4.5 and 8.5 [Wm−2]; (a) electricity consumption and (b) gas consumption.
Fig. 8. Cluster map of objective functions for a single run of the optimization algorithm for the retrofitted building in 2020; (a) overall range for the objective functions (b)
zoomed-in range for the objective functions.
the actual observations for a small office (Coop Housing building at
the University of Guelph). This building was simulated using VCWG
for the entire year of 2022. Fig. 6 shows the comparison for selected
months. VCWG predicted the mean daily PV power within 2 [%] of the
observations.

3.2. Base building electricity and gas consumption

From 2020 to 2100, it is expected that the dry bulb temperature for
Toronto, on annual average, will increase by 0.027 and 0.062 [Kyear−1]
for RCPs 4.5 and 8.5 [Wm−2], respectively [42]. We expect greater
electricity consumption for space cooling (air conditioning) and less
gas consumption for space heating under both RCP scenarios. Further,
we expect that the changes in electricity and gas consumption be more
accentuated under RCP 8.5 [Wm−2]. Fig. 7 shows the electricity and gas
consumption for a base building (without retrofits), for every decade
from 2020 until 2100 using one representative year for each decade
(i.e. for years 2020, 2030, 2040, etc.). The electricity consumption is
divided into domestic use and space cooling, while the gas consumption
is divided into water heating and space heating. The figure shows the
expected trends in the energy consumption noted above. Regarding
electricity consumption, all of the change is associated with the need for
space cooling. Regarding the gas consumption, almost all of the change
10
is associate space heating. Note that the water heating demand is a
function of deep soil temperature, which is not predicted to change as
drastically as atmospheric temperatures (not shown).

3.3. Retrofitted building overall/individual objective functions and GHG
emissions savings

Figs. 8 and 9 show the cluster map of individual objective functions
and the individual/overall objective functions versus optimization iter-
ation, respectively, throughout the optimization process for year 2020.
The initial solution for the retrofitted building is randomly sampled
from the variables space noted in Table 2. Given the random choice
of such variables, the optimization is repeated for 3 runs. In Fig. 9 the
left panel shows the result for only 1 run, while the right panel shows
the results for the 3 runs.

From Figs. 8 and 9(a) it can be noted that the micro-genetic algo-
rithm reduces the individual objective functions substantially within
only 30–40 overall iterations. The process indicates that all three ob-
jective functions of cost, gas consumption, and electricity consumption
can be reduced simultaneously. This is attractive compared to particle
swarm and ant colony methods, which require many hundreds of
iterations to substantially reduce the objective functions. Further, such
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Fig. 9. Objective functions versus optimization iteration for the retrofitted building in 2020; (a) individual objective functions for a single run (1) and (b) overall normalized
objective function for 3 runs (1, 2, 3); symbols show the onset of outer loop iterations.
Table 4
Average electricity consumption and savings for the base and retrofitted buildings.

Year Base building Retrofitted building Savings Base building Retrofitted building Savings
[kW − hrm−2] [kW − hrm−2] [%] [kW − hrm−2] [kW − hrm−2] [%]

RCP 4.5 [Wm−2] RCP 8.5 [Wm−2]

2020 110.00 56.38 48.74 110.00 56.38 48.74
2030 103.00 56.93 44.73 105.00 60.13 42.73
2040 113.00 66.75 40.93 115.00 68.54 40.40
2050 113.00 66.36 41.27 118.00 60.26 48.93
2060 121.00 72.83 39.81 132.00 50.54 61.71
2070 125.00 59.15 52.68 127.00 68.18 46.31
2080 122.00 64.82 46.87 135.00 75.41 44.14
2090 108.00 61.81 42.77 157.00 65.65 58.18
2100 131.00 67.51 48.47 146.00 67.01 54.10
Table 5
Average gas consumption and savings for the base and retrofitted buildings.

Year Base building Retrofitted building Savings Base building Retrofitted building Savings
[m3m−2] [m3m−2] [%] [m3m−2] [m3m−2] [%]

RCP 4.5 [Wm−2] RCP 8.5 [Wm−2]

2020 69.90 12.65 81.90 69.90 12.65 81.90
2030 72.20 14.38 80.08 76.60 13.28 82.67
2040 70.70 13.52 80.88 63.80 11.91 81.33
2050 72.40 13.37 81.53 66.60 11.71 82.42
2060 73.40 12.50 82.97 60.90 11.22 81.57
2070 68.80 12.73 81.50 62.50 11.20 82.09
2080 69.00 12.46 81.94 61.10 11.90 80.53
2090 67.90 13.77 79.72 58.60 11.50 80.37
2100 66.00 12.36 81.27 53.80 10.65 80.20
methods require a large population of solutions, which is computation-
ally beyond the capacity of VCWG [9,10]. Another attractive feature of
the micro-genetic algorithm is that it attempts to find a global minimum
every time the population is randomly re-sampled for the outer loop.

From Fig. 9(b) it can be seen that the 3 solutions (3 runs) do not
reach the same final normalized overall objective function. Two overall
objective functions are reduced by about 10 [%], while the third overall
bjective function is reduced by about 40 [%]. This is due to the fact
hat the initial solution is randomly chosen and used for normalization
f the subsequent solutions at later iterations. This random feature is
ommon in all the subsequent results. The following analysis uses 3
uns to investigate the optimum solution under different future climate
hange scenarios. To account for the solution variability, the average
nd standard deviation of the solutions over the 3 runs are reported.

Fig. 10 shows the energy consumption of base and retrofitted build-
ngs. As expected for the base building without retrofitted systems,
ith climate warming, the electricity consumption increases, due to
11
increasing cooling demand, and the gas consumption decreases, due
to decreasing heating demand, from 2020 to 2100. For the retrofitted
case, the average (line) and 1 standard deviation (shaded band) over
3 runs are shown. The retrofitted building offers great opportunity for
energy savings.

Tables 4 and 5 quantify the average electricity and gas consump-
tions and savings for the base and retrofitted buildings. The electricity
savings are within 39.81–52.68 [%] and 40.40–61.71 [%] for RCPs
4.5 and 8.5 [Wm−2], respectively. Given future climate projections,
the cooling demand or potential electricity savings of buildings do
not change monotonically over the decades; rather some decades may
experience greater cooling demand or potential electricity savings than
others. This is due to the projected climate conditions, particularly
the ambient temperature [42]. The gas savings are within 79.72–82.94
[%] and 80.20–82.67 [%] for RCPs 4.5 and 8.5 [Wm−2], respectively.
It appears that electricity savings are more variable from one decade
to the next than the gas savings. This may relate to occurrence of
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Fig. 10. Energy consumption of base and retrofitted buildings from 2020 to 2100 under two RCP scenarios of 4.5 and 8.5 [Wm−2]; (a) electricity consumption and (b) gas
consumption; for the retrofitted case, the average (line) and 1 standard deviation (shaded band) over 3 runs are shown.
Fig. 11. The annualized retrofit cost and GHG emissions saving over 20 years from 2020 to 2100 under two RCP scenarios of 4.5 and 8.5 [Wm−2]; (a) cost and (b) GHG emissions
savings; for the retrofitted case, the average (line) and 1 standard deviation (shaded band) over 3 runs are shown.
short-lived heat waves that can unpredictably demand excessive air
conditioning from one decade to the next; rather than base line heating
demands with lesser variability from one decade to the next.

Fig. 11 shows the annualized retrofit cost and the GHG emissions
savings over 20 years. The annualized retrofit cost, about 10–15 thou-
sand Dollars, is not affected substantially by the decades and the
future climate change scenario. This cost can be interpreted as the
green premium, i.e. the price a home owner shall pay to reduce their
GHG emissions. The retrofitted systems will save large amounts of
GHG emissions in the range 325–475 [TonnesCO2] over the duration of
20 years. The GHG emissions savings decline from 2020 to 2100, and
the savings potential is substantially reduced for the RCP 8.5 compared
to the RCP 4.5 [Wm−2] climate change scenario. We suggest that with
the more extreme climate change scenario of RCP 8.5 [Wm−2], the
building energy needs in the future will be enhanced, particularly the
cooling demand, so that modest and cost-effective retrofits considered
in this study cannot result in GHG emissions savings for the distant
future as effectively as the earlier decades.

3.4. Retrofitted building variables

Tables 6 and 7 show the trends for the average of optimized solu-
tions from 2020 to 2100 under the two RCP 4.5 and 8.5 [Wm−2] scenar-
ios. One key question is whether some optimized variables will not be
affected by climate change scenario in the future. In other words, are
there optimum solutions regardless of future climate change? Another
key questions is whether some optimized variables will be affected by
12
climate change scenario in the future. To answer this question, either
decade by decade variations of the optimized solutions can be analyzed,
or trend lines can be fitted to the optimized solution, and percent
change of the optimized solution per decade can be computed using the
slope of the trend lines to find the change over the entire time horizon
of 2020 to 2100 [60]. We will first discuss the optimized solutions that
do now show sensitivity to climate change scenarios in the future. We
will then discuss the optimized solutions that show such sensitivity.

From Tables 6 and 7 we note that the optimized thermal resistance
of roof 𝑅𝑟𝑜𝑜𝑓 [m2KW−1] is closer to the middle of the permissible range,
5.5–8 [m2KW−1], and the optimized thermal resistance of wall 𝑅𝑤𝑎𝑙𝑙
[m2KW−1] is also closer to the middle of the permissible range, 3.5–
7.5 [m2KW−1]. The optimum values are confounded by the combined
effects of heat gain/loss throughout the cooling/heating/shoulder sea-
sons. The optimized infiltration rate 𝑉𝑖𝑛𝑓 [ACH], however, is closer
to the minimum of the permissible range, 0.5 [ACH], and the opti-
mized ventilation rate 𝑉𝑣𝑒𝑛𝑡 [Ls−1m−2] is also closer to the minimum
of the permissible range, 0.3–0.6 [Ls−1m−2], suggesting that fresh air
exchange with the outdoor environment generally results in greater
energy consumption for cooling and heating. It must be noted that
such minimum air exchange rates are vital from the point of view of
indoor air quality, and they cannot be eliminated [61]. The optimized
Glazing Ratio 𝐺𝑅 [-] is also found to be closer to the minimum
of the permissible range, 0.1–0.5 [-], suggesting that unwanted heat
transfer through windows generally results in greater building energy
consumption. The minimum glazing ratio should be maintained from

the perspective of indoor health. The optimized collector area for PV
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Table 6
Time trend of the average optimized variables for RCP 4.5 [Wm−2]; the percent change is calculated over one decade.

Symbol Units 2020 2030 2040 2050 2060 2070 2080 2090 2100 % Change

𝑉𝑏𝑖𝑡𝑒𝑠 [m3m−2] 0.0533 0.0333 0.0167 0.0533 0.0300 0.0367 0.0133 0.0833 0.0667 6.98
𝛼𝑅 [-] 0.233 0.550 0.517 0.467 0.500 0.367 0.417 0.283 0.267 −4.03
�̇�𝑠𝑡,𝑓 [gs−1m−2] 0.333 0.533 0.433 0.867 0.867 0.633 0.867 0.900 0.600 6.96
𝐴𝑠𝑡 [m2m−2] 0.333 0.467 0.383 0.467 0.367 0.433 0.583 0.217 0.350 −1.32
𝑅𝑟𝑜𝑜𝑓 [m2KW−1] 6.83 6.00 7.33 6.83 6.00 6.33 6.50 7.17 7.67 1.15
𝑉𝑝𝑐𝑚 [m3m−2] 0.0233 0.0233 0.0467 0.0300 0.0633 0.0200 0.0300 0.0267 0.0833 8.94
𝑉𝑖𝑛𝑓 [ACH] 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.667 0.500 1.61
𝑅𝑤𝑎𝑙𝑙 [m2KW−1] 5.17 4.83 4.50 5.00 5.33 5.50 6.17 4.33 5.50 1.19
𝑉𝑣𝑒𝑛𝑡 [Ls−1m−2] 0.467 0.383 0.433 0.350 0.300 0.367 0.350 0.333 0.383 −2.82
𝐺𝑅 [-] 0.133 0.250 0.150 0.183 0.167 0.167 0.100 0.217 0.183 −0.16
�̇�ℎ𝑒,𝑠𝑡 [kgs−1m−2] 0.0070 0.0147 0.0083 0.0107 0.0103 0.0090 0.0063 0.0067 0.0093 −3.70
𝑇𝑚𝑒𝑙𝑡 [K] 305 300 305 296 299 300 299 298 301 −0.15
𝐴𝑤𝑡 [m2m−2] 0.117 0.117 0.083 0.083 0.083 0.117 0.117 0.117 0.133 2.59
𝑆𝐻𝐺𝐶 [-] 0.533 0.300 0.367 0.367 0.433 0.367 0.467 0.367 0.300 −2.29
𝐴𝑝𝑣 [m2m−2] 0.600 0.600 0.600 0.567 0.533 0.600 0.533 0.600 0.567 −0.67
Table 7
Time trend of the averaged optimizated variables for RCP 8.5 [Wm−2]; the percent change is calculated over one decade.

Symbol Units 2020 2030 2040 2050 2060 2070 2080 2090 2100 % Change

𝑉𝑏𝑖𝑡𝑒𝑠 [m3m−2] 0.0533 0.0867 0.0233 0.0300 0.0400 0.0767 0.0333 0.0400 0.0567 −2.05
𝛼𝑅 [-] 0.233 0.417 0.417 0.467 0.400 0.383 0.350 0.483 0.300 1.09
�̇�𝑠𝑡,𝑓 [gs−1m−2] 0.333 0.267 0.467 0.733 0.800 0.867 0.433 1.033 1.233 14.51
𝐴𝑠𝑡 [m2m−2] 0.333 0.367 0.467 0.383 0.367 0.400 0.317 0.450 0.567 3.70
𝑅𝑟𝑜𝑜𝑓 [m2KW−1] 6.83 6.17 6.67 6.17 6.83 7.33 6.17 6.83 6.50 0.21
𝑉𝑝𝑐𝑚 [m3m−2] 0.0233 0.0667 0.0167 0.0667 0.0767 0.0333 0.0233 0.0300 0.0300 −4.23
𝑉𝑖𝑛𝑓 [ACH] 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.00
𝑅𝑤𝑎𝑙𝑙 [m2KW−1] 5.17 5.17 5.00 5.83 6.67 5.50 4.17 5.00 5.17 −0.79
𝑉𝑣𝑒𝑛𝑡 [Ls−1m−2] 0.467 0.333 0.367 0.317 0.367 0.350 0.467 0.383 0.367 −0.07
𝐺𝑅 [-] 0.133 0.133 0.250 0.150 0.133 0.133 0.133 0.150 0.150 −1.46
�̇�ℎ𝑒,𝑠𝑡 [kgs−1m−2] 0.0070 0.0077 0.0077 0.0067 0.0043 0.0083 0.0153 0.0123 0.0110 8.78
𝑇𝑚𝑒𝑙𝑡 [K] 305 304 297 297 299 306 297 302 294 −0.22
𝐴𝑤𝑡 [m2m−2] 0.117 0.100 0.050 0.117 0.100 0.150 0.117 0.100 0.100 1.58
𝑆𝐻𝐺𝐶 [-] 0.533 0.333 0.400 0.333 0.367 0.400 0.467 0.200 0.167 −7.81
𝐴𝑝𝑣 [m2m−2] 0.600 0.600 0.600 0.567 0.600 0.500 0.500 0.600 0.567 −1.17
𝐴𝑝𝑣 [m2m−2] is found to be closer to the maximum of the permissible
range, 0.1–0.6 [-], suggesting that in the Canadian climate PV is one
of the most cost effective approaches to harness green electricity. The
optimized swept area of WT 𝐴𝑤𝑡 [m2m−2] is found to be closer to the
middle of the permissible range, 0.05–0.2 [m2m−2]. This is influenced
by magnitude of wind speed, intermittency of wind, and the associated
economics.

Some solutions show sensitivity to climate change scenarios in
the future, which can be quantified using the percent change of the
optimized solution per decade. Under RCP 4.5 [Wm−2] the five greatest
magnitudes of the optimized solution change are associated with 𝑉𝑝𝑐𝑚
(8.94 [%]), 𝑉𝑏𝑖𝑡𝑒𝑠 (6.98 [%]), �̇�𝑠𝑡,𝑓 (6.96 [%]), 𝛼𝑅 (−4.03 [%]), and �̇�ℎ𝑒,𝑠𝑡
−3.70 [%]). Under RCP 8.5 [Wm−2] the five greatest magnitudes of the
ptimized solution change are associated with �̇�𝑠𝑡,𝑓 (14.51 [%]), �̇�ℎ𝑒,𝑠𝑡
8.78 [%]), 𝑆𝐻𝐺𝐶 (−7.81 [%]), 𝑉𝑝𝑐𝑚 (−4.23 [%]), and 𝐴𝑆𝑇 (3.70 [%]).

We will attempt to explain the observed trends for the optimized
olutions that show the highest sensitivity to the climate change sce-
ario in the future. Fig. 12 shows the optimized roof albedo 𝛼𝑅 [-] as
t changes for climate change scenarios in the future. On the one hand,
igher roof albedos help with reducing the building cooling demand
n the Summer season by reflecting the shortwave solar radiation; on
he other hand, lower roof albedos help with reducing the building
eating demand in the Winter season by absorbing the shortwave
olar radiation. The combined effects suggest that lower albedos are
esirable, particularly for future climate change scenario of RCP 4.5
Wm−2].

Fig. 13 shows the optimized Solar Heat Gain Coefficient 𝑆𝐻𝐺𝐶 [-]
s it changes for climate change scenarios in the future. 𝑆𝐻𝐺𝐶 is a
ariable that relates to windows. The higher the 𝑆𝐻𝐺𝐶 the greater
mount of solar radiation is absorbed through a window. Again, a
ower 𝑆𝐻𝐺𝐶 helps with reducing the building cooling demand in
he Summer season; while, a higher 𝑆𝐻𝐺𝐶 helps with reducing the
13
Fig. 12. Optimized roof albedo 𝛼𝑅 [-] from 2020 to 2100 under two RCP scenarios of
4.5 and 8.5 [Wm−2]; for the retrofitted case, the average (line) and 1 standard deviation
(shaded band) over 3 runs are shown.

building heating demand in the Winter season. The combined effects
suggest that a lower 𝑆𝐻𝐺𝐶 is desirable, particularly for future climate
change scenario of RCP 8.5 [Wm−2].

Fig. 14 shows the optimized area of solar thermal collector 𝐴𝑆𝑇
[m2m−2] as it changes for climate change scenarios in the future. With
climate warming, particularly under the RCP 8.5 [Wm−2] scenario,
greater amounts of solar thermal collector area can harness the so-
lar thermal energy by 2100. Meanwhile, under the RCP 4.5 [Wm−2]
scenario, greater amounts of solar thermal collector area can harness
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Fig. 13. Optimized Solar Heat Gain Coefficient 𝑆𝐻𝐺𝐶 [-] from 2020 to 2100 under
wo RCP scenarios of 4.5 and 8.5 [Wm−2]; for the retrofitted case, the average (line)
nd 1 standard deviation (shaded band) over 3 runs are shown.

Fig. 14. Optimized area of Solar Thermal collector 𝐴𝑆𝑇 [m2m−2] from 2020 to 2100
under two RCP scenarios of 4.5 and 8.5 [Wm−2]; for the retrofitted case, the average
(line) and 1 standard deviation (shaded band) over 3 runs are shown.

the solar thermal energy for the warmed decade of 2080, while, lower
amounts of solar thermal collector area are recommended for cooled
decades of 2090 and 2100.

Related to Fig. 14 are Figs. 15 and 16, which determine how fast
solar thermal energy shall by retrieved from the solar thermal collec-
tor. With climate warming, particularly under the RCP 8.5 [Wm−2]
scenario, greater amounts of mass flow rate of the working fluid in
the solar thermal collector �̇�𝑠𝑡,𝑓 [gs−1m−2] and mass flow rate of air
for the solar thermal collector �̇�ℎ𝑒,𝑠𝑡 [gs−1m−2] are justified. These
low rates are critical for the optimum performance of the energy
ystem. Mass flow rates that are too low will permit higher temperature
radients to appear between the thermal energy systems, but they do
ot facilitate flow of heat throughout the thermal energy systems. On
he other hand, mass flow rates that are too high will attempt to transfer
igher amounts of thermal energy, but they do not permit large enough
emperature gradients for effective thermal management.

Figs. 17 and 18 show the optimized volume of Building Integrated
hermal Energy Storage (BITES) system 𝑉𝑏𝑖𝑡𝑒𝑠 [m3m−2] and the volume
f Phase Change Material (PCM) 𝑉𝑝𝑐𝑚 [m3m−2] as they change for
limate change scenarios in the future. Under RCP 4.5 [Wm−2] greater
14
Fig. 15. Optimized mass flow rate of the working fluid in the solar thermal collector
̇ 𝑠𝑡,𝑓 [gs−1m−2] from 2020 to 2100 under two RCP scenarios of 4.5 and 8.5 [Wm−2];

for the retrofitted case, the average (line) and 1 standard deviation (shaded band) over
3 runs are shown.

Fig. 16. Optimized mass flow rate of air for the solar thermal collector �̇�ℎ𝑒,𝑠𝑡 [gs−1m−2]
from 2020 to 2100 under two RCP scenarios of 4.5 and 8.5 [Wm−2]; for the retrofitted
case, the average (line) and 1 standard deviation (shaded band) over 3 runs are shown.

amounts of BITES are justified in decades of 2090 and 2100, and greater
amounts of PCM are justified in decades of 2060 and 2100. Under
RCP 8.5 [Wm−2] greater amounts of BITES are justified in decades of
2030 and 2070, and greater amounts of PCM are justified in decades of
2050 and 2060. Utilization of PCM is mainly triggered in the shoulder
seasons, when the temperature of the BITES system oscillates around
the melting point of PCM. According to Tables 6 and 7, the optimization
process finds appropriate melting temperatures for PCM to range from
294 to 306 [K] given the RCP and decade of interest. Beside finding the
appropriate melting temperature, the optimization method uncovers
magnitudes of PCM that most appropriately function with the BITES
system.

As noted earlier, many of the trends above do not show monotonic
increase or decrease from 2020 to 2100. Rather, there is variability in
the optimized solutions from one decade to another. This calls for a
more detailed optimization that is applied for 20 consecutive years.
Doing so, a higher time-resolution trend can be obtained, say from
2020 to 2040, that is appropriate for a particular retrofit study in the
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Fig. 17. Optimized volume of Building Integrated Thermal Energy Storage (BITES)
system 𝑉𝑏𝑖𝑡𝑒𝑠 [m3m−2] from 2020 to 2100 under two RCP scenarios of 4.5 and 8.5
[Wm−2]; for the retrofitted case, the average (line) and 1 standard deviation (shaded
band) over 3 runs are shown.

Fig. 18. Optimized volume of Phase Change Material (PCM) 𝑉𝑝𝑐𝑚 [m3m−2] from 2020
to 2100 under two RCP scenarios of 4.5 and 8.5 [Wm−2]; for the retrofitted case, the
average (line) and 1 standard deviation (shaded band) over 3 runs are shown.

near term. The current study, nevertheless, shows the feasibility of
conducting the optimization study over any time period of interest or
with any time resolution that is desired.

Some controversies also arise from the results found. First, air source
heat pumps are criticized for their ineffectiveness in cold climates.
They are believed to struggle in the heating season due to outdoor
temperatures being too low for effective coefficient of performance and
frost problems. However, given the configuration proposed, the heat
pump can interact with a thermal energy storage system, for which
the temperature can be regulated for effective heat pump performance.
In fact, in the VCWG model, the dependence of heat pump coefficient
of performance on temperature is accounted for (not shown). Second,
there is a misconception that solar thermal technologies are not useful
for the cold climates, where high temperatures cannot be reached by
solar thermal collectors for water and space heating applications. How-
ever, given the configuration proposed, the solar thermal collectors can
provide low grade heat, which in combination with the thermal energy
storage and heat pump systems can be effective. This is evidenced by
optimized solar collector areas that are far greater than the permissible
15

minimum values.
4. Conclusions

Necessitated by the climate change impact of buildings, this study
investigates the building retrofit options to reduce the energy con-
sumption of buildings cost-effectively. The study focuses on low-rise
two-storey residential houses of Toronto. A particular focus of the
study is to propose a building system configuration that is suitable for
the cold climate of Canada. The study is framed with a micro-genetic
optimization algorithm to size and select numerous building systems
to simultaneously reduce electricity consumption, gas consumption,
and retrofit cost. The time period considered is from 2020 to 2100
under two Representative Concentration Pathways (RCPs) of 4.5 and
8.5 [Wm−2].

The Vertical City Weather Generator (VCWG v1.5.0) urban physics
model is used for building energy and cost calculations for an en-
tire year every decade. The Vatic Weather File Generator (VWFG
v1.0.0) is used to create the forcing weather files for VCWG using
the statistical down-scaling approach. Beside the standard features, the
building systems include a Solar Thermal (ST) collector, Photovoltaic
(PV) collector, Wind Turbine (WT), Building Integrated Thermal Energy
Storage (BITES) system, Phase Change Material (PCM), Heat Pump
(HP), and heat recovery systems in addition to the use of ground
thermal energy. The ground-source HP exchanges heat with the build-
ing foundation, and it supplements the conventional space heating
(natural gas furnace) and cooling (air conditioning) systems. The BITES
is charged/discharged using the ST, HP, exhaust air, supply water, or
gray water. Fifteen building variables are optimized. These include the
volume of BITES, roof albedo, working fluid flow rate for ST, collector
area for ST, roof thermal resistance, volume of PCM, infiltration rate,
wall thermal resistance, ventilation rate, glazing ratio, air flow rate
for ST, melting temperature of PCM, swept area of WT, Solar Heat
Gain Coefficient (𝑆𝐻𝐺𝐶), and collector area for PV. The following
conclusions are reached:

1. Using future climate projections until 2100, future demand for
electricity will rise, due to excess cooling demand, and future
demand for natural gas will fall, due to a reduction in heating
demand.

2. Given the system configuration proposed, the electricity savings
are within 39.81–52.68 [%] and 40.40–61.71 [%] for RCPs 4.5
and 8.5 [Wm−2], respectively. The gas savings are within 79.72–
82.94 [%] and 80.20–82.67 [%] for RCPs 4.5 and 8.5 [Wm−2],
respectively.

3. Compared to standard genetic algorithms, which require many
hundreds of iterations to reach a nearly global optimum solution,
the micro-genetic optimization algorithm is very efficient and
fast, and it reaches a nearly global optimum solution within
30–40 overall iterations.

4. The annualized retrofit cost, about 10–15 thousand Dollars, is
not affected substantially by the decades and the future climate
change scenario.

5. The retrofitted systems will save large amounts of GreenHouse
Gas (GHG) emissions in the range 325–475 [TonnesCO2] over
the duration of 20 years. The GHG emissions savings are greater
in the early decades, than the late decades. The GHG emissions
savings are greater for the RCP 4.5 [Wm−2] scenario than the
RCP 8.5 [Wm−2] scenario.

6. Some optimized building variables do not show sensitivity to
time and the future climate change scenario. Specifically, the op-
timized ventilation/infiltration rates and glazing ratio are found
to be closer to the minimum of the permissible ranges. The
optimized envelop thermal resistance values (for walls and roof)
and swept area of WT, are closer to the middle of the permissible
ranges. The optimized PV area is closer to the maximum of the

permissible range.
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7. Some optimized building variables show sensitivity to time and
the future climate change scenario, but they do not show overall
trends for the time period 2020–2100. Specifically, the optimum
melting temperature for PCM is found to change decade by
decade.

8. Some optimized building variables show overall trends for the
time period 2020–2100 under the two RCP scenarios. Specifi-
cally, under RCP 4.5 [Wm−2], the volume of BITES, the volume
of PCM, and working fluid flow rate for ST are suggested to
increase, while the roof albedo and air flow rate for ST are
suggested to decrease. Under RCP 8.5 [Wm−2], the collector area
for ST, working fluid flow rate for ST, and air flow rate for ST
are suggested to increase, while the volume of PCM and 𝑆𝐻𝐺𝐶
are suggested to decrease.

9. For optimized variables with decade-by-decade variability, it is
suggested to conduct detailed optimization studies in 20 con-
secutive years. For practical retrofits under consideration, the
increased time-resolution for the optimization study informs
stake holders’ decisions more appropriately. This clarifies better
value choices for the optimized variables.

10. Contrary to popular belief, that solar thermal and heat pump
technologies are not suitable for cold climates, there is evidence
that such technologies show promise for integration into the
building systems for energy and cost savings, given the proposed
configuration in this study.

The overall study is successful, showing that the micro-genetic
ptimization algorithm can find, computationally fast, building system
onfigurations that result in simultaneous electricity consumption, gas
onsumption, and retrofit cost savings. The limitations of this study
nspire future developments:

1. Future work shall entail investigation of other building types
(e.g. office buildings, public buildings, commercial buildings,
etc.).

2. Future work shall investigate other climate zones in Canada and
world-wide.

3. Future work shall increase the time resolution for the optimiza-
tion study by performing annual simulations continuously for a
period of 20–30 years for a targeted retrofit study (i.e. for years
2030, 2031, 2032, etc.).

4. The number of optimization variables may be increased, or
new variables may be considered. For instance, currently, the
research community is interested in climate impacts of urban
vegetation and green building exteriors, which can be studied
in the future [62].

5. Future work shall extend the optimization objective functions to
parameters describing indoor air quality and thermal comfort as
well [13,63].

6. Future work shall study the convergence behavior of genetic
algorithms in their ability to reach a nearly global optimum
solution given their population size, number of generations, and
internal settings. Current research cannot affirm the convergence
behavior of such algorithms formally, so fundamental research
is needed in this regard.

7. The proposed configuration for the building systems is only one
possible scenario adapted for the cold climate of Canada. In
future, other building system configurations may be explored
using VCWG v1.5.0 or later versions.

8. Beside the operational carbon footprint of buildings, future work
shall focus on the embodied carbon footprint of new buildings
with a more comprehensive optimization approach.
16
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Appendix

A.1. Retrofitted building systems energy model

The ST collector is modeled using the parameterization of Hottel–
Whillier–Bliss [64]. This model is developed for non-building inte-
grated flat plate collectors. This model computes an energy balance that
considers the shortwave radiation gain, longwave radiation loss, and
convective loss to air at ambient conditions. It determines the available
solar energy 𝑄𝑠𝑡 [Wm−2] for a collector as [64]

𝑄𝑠𝑡 = 𝐹𝑅𝑠𝑡𝐴𝑠𝑡
[

(𝜏𝛼)𝑒𝐼 − 𝑈𝑠𝑡(𝑇𝑠𝑡,𝑓 ,𝑖 − 𝑇𝑎)
]

= �̇�𝑠𝑡,𝑓 𝑐𝑠𝑡,𝑓 (𝑇𝑠𝑡,𝑓 ,𝑜 − 𝑇𝑠𝑡,𝑓 ,𝑖), (9)

where 𝐹𝑅𝑠𝑡 [-] is the heat removal coefficient, 𝐴𝑠𝑡 [m2m−2] is the
ollector area per building footprint area, (𝜏𝛼)𝑒 [-] is the effective
ransmittance–absorbance product, 𝐼 [Wm−2] is the incoming short-
ave radiation flux normal to the collector, 𝑈𝑠𝑡 [Wm−2K−1] is the

onvective and radiative heat loss factor, 𝑇𝑠𝑡,𝑓 ,𝑖 [K] is the inlet working

luid temperature to the collector, 𝑇𝑠𝑡,𝑓 ,𝑜 [K] is the outlet working fluid

https://www.aaa-scientists.com/
https://www.aaa-scientists.com/
https://www.aaa-scientists.com/
https://github.com/AmirAAliabadi


Building and Environment 243 (2023) 110655A.A. Aliabadi et al.

t
t

w
𝜂
s
s

t
m

𝑊

w
[
s

e
s
b
T

𝜂

i

d
a
b
𝐶
T

𝑊

𝐶

𝐶

f
𝐶
f
r

A

b

𝐶

w
t
s
f
t
(
b
a

a
s
m
z
w
c

𝐶

q
r
2
b

𝐶

𝑖

temperature from the collector, 𝑇𝑎 [K] is outdoor atmospheric tempera-
ure, �̇�𝑠𝑡,𝑓 [kgs−1m−2] is the mass flow rate of the working fluid through
he collector per unit building footprint area, and 𝑐𝑠𝑡,𝑓 [Jkg−1K−1] is the

heat capacity of the working fluid at constant pressure. The incident
shortwave radiation flux normal to the collector 𝐼 [Wm−2] is calculated
by [5,65]

𝐼 = 𝑆↓𝑑𝑖𝑟 cos 𝜃𝑎 cos(𝜃𝑧 − 𝛽𝑠𝑡) + 𝑆↓𝑑𝑖𝑓𝑓 , (10)

where 𝛽𝑠𝑡 [°] is the collector tilt angle, 𝜃𝑧 [°] the zenith angle, 𝜃𝑎
[°] the azimuth angle, 𝑆↓𝑑𝑖𝑟 [Wm−2] is the direct shortwave radiation
flux vector from the sky, and 𝑆↓𝑑𝑖𝑓𝑓 [Wm−2] is the diffuse shortwave
radiation flux vector from the sky.

The electric power output of the PV panel is computed assuming a
constant conversion efficiency such that [65]

𝑊𝑝𝑣 = 𝜂𝑝𝑣𝐴𝑝𝑣𝐼 = 𝜂𝑝𝑣𝐴𝑝𝑣𝑆
↓𝑑𝑖𝑟 cos 𝜃𝑎 cos(𝜃𝑧 − 𝛽𝑝𝑣), (11)

here 𝐴𝑝𝑣 [m2m−2] is the collector area per building footprint area,
𝑝𝑣 [-] is conversion efficiency, and 𝛽𝑝𝑣 [°] is the tilt angle of the PV
ystem, which is usually considered close to the latitude angle at the
ite of interest.

The electric power output of the WT system is computed using
he most generic WT equation, for a specified operational range of
inimum and maximum possible wind speeds, such that [66]

𝑤𝑡 = 0.5𝜂𝑤𝑡𝜌𝐴𝑤𝑡𝑆
3, (12)

here 𝜂𝑤𝑡 [-] is the turbine efficiency, 𝜌 [kgm−3] is air density, and 𝑆
ms−1] is wind speed near roof level of a building, and 𝐴𝑤𝑡 [m2m−2] is
wept area of the turbine per building footprint area.

The counter-flow heat exchanger is used to exchange thermal en-
rgy between the ST collector (working fluid) and the BITES (air)
ystems. The goal of the heat exchanger model is to find a relationship
etween inlet and outlet temperatures for the two streams of the fluids.
his relationship can be given using the efficiency of the heat exchanger

ℎ𝑒,𝑠𝑡 =
𝑇𝑠𝑡,𝑓 ,𝑜 − 𝑇𝑠𝑡,𝑓 ,𝑖
𝑇𝑠𝑡,𝑓 ,𝑜 − 𝑇ℎ𝑒,𝑠𝑡,𝑖

. (13)

We can provide an equation for 𝑇ℎ𝑒,𝑠𝑡,𝑜 [K] given other inlet tem-
peratures (𝑇𝑠𝑡,𝑓 ,𝑜 and 𝑇ℎ𝑒,𝑠𝑡,𝑖 [K]), mass flow rates (�̇�𝑠𝑡,𝑓 and �̇�ℎ𝑒,𝑠𝑡
[kgs−1m−2]), and heat capacities (𝑐𝑠𝑡,𝑓 and 𝑐𝑎𝑖𝑟 [Jkg−1K−1])

𝑇ℎ𝑒,𝑠𝑡,𝑜 − 𝑇ℎ𝑒,𝑠𝑡,𝑖 =
�̇�𝑠𝑡,𝑓 𝑐𝑠𝑡,𝑓
�̇�ℎ𝑒,𝑠𝑡𝑐𝑎𝑖𝑟

(𝑇𝑠𝑡,𝑓 ,𝑜 − 𝑇𝑠𝑡,𝑓 ,𝑖),

=
�̇�𝑠𝑡,𝑓 𝑐𝑠𝑡,𝑓
�̇�ℎ𝑒,𝑠𝑡𝑐𝑎𝑖𝑟

𝜂ℎ𝑒,𝑠𝑡(𝑇𝑠𝑡,𝑓 ,𝑜 − 𝑇ℎ𝑒,𝑠𝑡,𝑖),

𝑇ℎ𝑒,𝑠𝑡,𝑜 =
�̇�𝑠𝑡,𝑓 𝑐𝑠𝑡,𝑓
�̇�ℎ𝑒,𝑠𝑡𝑐𝑎𝑖𝑟

𝜂ℎ𝑒,𝑠𝑡(𝑇𝑠𝑡,𝑓 ,𝑜 − 𝑇ℎ𝑒,𝑠𝑡,𝑖) + 𝑇ℎ𝑒,𝑠𝑡,𝑖. (14)

We use a lump system approach with uniform temperature 𝑇𝑏𝑖𝑡𝑒𝑠 [K]
for the BITES system. Given the sensible energy balance, the change in
temperature of the BITES system over finite time 𝛥𝑡 [s], considering
heat gains 𝑄𝑔𝑎𝑖𝑛,𝑖 [Wm−2], heat losses 𝑄𝑙𝑜𝑠𝑠,𝑖 [Wm−2], and ground heat
transfer 𝑄𝑔𝑟𝑜𝑢𝑛𝑑 [Wm−2] can be written as

𝛥𝑇𝑏𝑖𝑡𝑒𝑠𝑉𝑏𝑖𝑡𝑒𝑠𝑐𝑏𝑖𝑡𝑒𝑠 = +
𝑛
∑

𝑖=1
𝑄𝑔𝑎𝑖𝑛,𝑖𝛥𝑡 −

𝑚
∑

𝑖=1
𝑄𝑙𝑜𝑠𝑠,𝑖𝛥𝑡 +𝑄𝑔𝑟𝑜𝑢𝑛𝑑𝛥𝑡, (15)

where 𝛥𝑇𝑏𝑖𝑡𝑒𝑠 [K] is change in the temperature of the BITES system,
𝑉𝑏𝑖𝑡𝑒𝑠 [m3m−2] is the volume of the BITES system per unit building
footprint area, and 𝑐𝑏𝑖𝑡𝑒𝑠 [Jm−3K−1] is the volumetric heat capacity of
the BITES system. The BITES system may be simultaneously charged
or discharged using multiple sources and/or sinks of energy. The tem-
peratures of the surrounding systems determine the availability of heat
gains and losses for the BITES system.

The ground heat flux is calculated using the resistance 𝑅𝑑𝑒𝑒𝑝
[m2KW−1] between the BITES temperature 𝑇𝑏𝑖𝑡𝑒𝑠 [K] and the deep soil
temperature 𝑇 [K]. The ground heat flux could act as a source
17

𝑑𝑒𝑒𝑝
(heating BITES) or sink (cooling BITES) of thermal energy for the BITES
system. The ground heat flux can be given as

𝑄𝑔𝑟𝑜𝑢𝑛𝑑 =
𝑇𝑑𝑒𝑒𝑝 − 𝑇𝑏𝑖𝑡𝑒𝑠

𝑅𝑑𝑒𝑒𝑝
. (16)

If PCMs are embedded in the BITES system, the heat transferred to
the material results in melting or solidifying a portion of the volume of
PCM without changing the temperature of the BITES system. The latent
heat balance equation for the PCM can be given as

𝛥𝑉𝑝𝑐𝑚𝑙𝑝𝑐𝑚 = +
𝑛
∑

𝑖=1
𝑄𝑔𝑎𝑖𝑛,𝑖𝛥𝑡 −

𝑚
∑

𝑖=1
𝑄𝑙𝑜𝑠𝑠,𝑖𝛥𝑡 +𝑄𝑔𝑟𝑜𝑢𝑛𝑑𝛥𝑡, (17)

where 𝛥𝑉𝑝𝑐𝑚 [m3m−2] is the change in volume of PCM melted (positive)
or solidified (negative) per unit building footprint area and 𝑙𝑝𝑐𝑚 [Jm−3]
s the volumetric latent heat of melting/solidification.

The HP equations can be developed using the first law of thermo-
ynamics. This law states that the electricity consumption (𝑊ℎ𝑝) in
ddition to the heat removed from a cold reservoir of heat (𝑄𝐿) should
e equal to the heat forced into a warm reservoir of heat (𝑄𝐻 ). The
𝑂𝑃ℎ𝑝 for the HP is defined differently under heating or cooling modes.
he following three equations are used [67]

ℎ𝑝 +𝑄𝐿 = 𝑄𝐻 , (18)

𝑂𝑃ℎ𝑝 =
𝑄𝐻
𝑊ℎ𝑝

(Heating mode), (19)

𝑂𝑃ℎ𝑝 =
𝑄𝐿
𝑊ℎ𝑝

(Cooling mode). (20)

In fact, the 𝐶𝑂𝑃ℎ𝑝 of the heat pump is characterized by a per-
ormance curve that considers the effect of outside temperature. The
𝑂𝑃ℎ𝑝 is adjusted using this performance curve, such that it varies

rom 1.5 to 4 for outside temperatures from 253.15 [K] to 308.15 [K],
espectively [67].

.2. Economics model

The marginal annualized cost of a building systems retrofit is given
y

= 𝐶𝐼 + 𝐶𝐺 + 𝐶𝐸 + 𝐶𝑂𝑀 − 𝐶𝑆 , (21)

here 𝐶𝐼 is the annualized initial investment for the systems’ acquisi-
ion, 𝐶𝐺 is the annualized cost of fuel consumption (natural gas in this
tudy), 𝐶𝐸 is the annualized cost of electricity consumption supplied
rom the grid, 𝐶𝑂𝑀 is the annualized cost of operation and main-
enance, and 𝐶𝑆 is the annualized income of discarding the systems
salvage value). These costs are calculated for a residential two-storey
uilding assuming a building footprint area of 196 [m2], building wall
rea of 336 [m2], and building roof area of 271 [m2] that is pitched.

The goal of the economic analysis is to know the marginal annu-
lized cost, defined as the difference in cost for a retrofitted building
ystem and a pre-existing system. Without retrofitting the building, the
arginal initial cost for a conventional system is 𝐶𝐵 [$]. This cost is not

ero because without retrofitting the building the conventional system
ould be over-sized to meet the energy demand. This annualized cost

an be given by [5,65]

𝐼𝐵 = 𝐶𝐵 × 𝐶𝑅𝐹 (𝑖,𝑁). (22)

The capital recovery factor calculates the annualized payment re-
uired to form a total present worth of an amount given a discounting
ate (here the effective interest rate 𝑖) and the number of years 𝑁 =
0. The capital recovery factor and effective interest rate are given
y [5,65]

𝑅𝐹 (𝑖,𝑁) = 𝑖
1 − (1 + 𝑖)−𝑁

, (23)

=
𝑖𝑛 − 𝑗

, (24)

1 + 𝑗
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Table 8
Parameters required for the economic analysis.
Source: Values adapted from Aliabadi et al. [5].

Parameter Units Description Value

𝑖𝑛 [%] Nominal interest rate 3.78
𝑗 [%] Inflation rate 1.88
𝑃𝐺 [$m−3] Natural gas price 0.137
𝑗𝐺 [%] Natural gas price increase 1.00
𝑃𝐸 [$kW − hr−1] Electricity price 0.127
𝑗𝐸 [%] Electricity price increase 4.50
𝑃𝑝𝑣 [$m−2] Price of photovoltaic collector 377
𝑃𝑤𝑡 [$m−2] Price of wind turbine 490 × 2a

𝑃𝑠𝑡 [$m−2] Price of solar thermal collector 340
𝑃𝑏𝑖𝑡𝑒𝑠 [$m−3] Price of BITES 200
𝑃𝑝𝑐𝑚 [$m−3] Price of PCM 1930 × 2a

𝑃ℎ𝑝 [$m−2] Price of heat pump 20 × 2a

𝑃𝑤𝑎𝑙𝑙 [$m−4K−1W] Price of increasing thermal resistance 8
𝑃𝑟𝑜𝑜𝑓 [$m−4K−1W] Price of increasing thermal resistance 8
𝐼𝑇𝐶𝑝𝑣 [$] Rebate for photovoltaic collector 3000
𝐼𝑇𝐶𝑖𝑛𝑓 [$] Rebate for air tightness 550
𝐼𝑇𝐶𝑅 [$m−4K−1W] Rebate for thermal resistance 2.15
𝐶𝑂𝑀𝐵 [$m−2] Operation and maintenance for base system 1
𝑂𝑀𝑝𝑣 [$m−2] Operation and maintenance for photovoltaic collector 0.01𝑃𝑝𝑣
𝑂𝑀𝑤𝑡 [$m−2] Operation and maintenance for wind turbine 0.02𝑃𝑤𝑡
𝑂𝑀𝑠𝑡 [$m−2] Operation and maintenance for solar thermal collector 0.01𝑃𝑠𝑡
𝑂𝑀𝑏𝑖𝑡𝑒 [$m−3] Operation and maintenance for BITES 0.01𝑃𝑏𝑖𝑡𝑒𝑠
𝑂𝑀𝑝𝑐𝑚 [$m−3] Operation and maintenance for PCM 0.01𝑃𝑝𝑐𝑚
𝑂𝑀ℎ𝑝 [$m−2] Operation and maintenance for heat pump 0.05𝑃ℎ𝑝
𝑂𝑀𝑐𝑟 [$] Operation and maintenance for cool roof 75
𝐹𝑆𝐵 [-] Salvage factor for base system 0.03
𝐹𝑆 [-] Salvage factor for renewable energy system 0.05
𝐶𝐵 [$m−2] Marginal initial cost for base system 5

aSystems that require one replacement over the investment horizon.
𝐶

c
h
c

s
e

𝐶

w
t
u
e

s
f
P

𝐶

here 𝑖𝑛 is the nominal interest rate and 𝑗 is the inflation rate. The
nterest rate 𝑖𝑛 = 0.0378 is taken as the median value of the prime rate
ver the last 20 years by Statistics Canada.2 The inflation rate 𝑗 = 0.0188
s also taken as the median value over the last 20 years.3

The annualized initial investment for retrofitted building systems
an be calculated by adding the initial price, subtracting the govern-
ent rebate (or incentive), and annualizing the cost using

𝐼 = [𝐴𝑝𝑣𝑃𝑝𝑣 + 𝐴𝑤𝑡𝑃𝑤𝑡 + 𝐴𝑠𝑡𝑃𝑠𝑡 + 𝑉𝑏𝑖𝑡𝑒𝑠𝑃𝑏𝑖𝑡𝑒𝑠

+ 𝑉𝑝𝑐𝑚𝑃𝑝𝑐𝑚 + 𝐴𝑐𝑟𝑃𝑐𝑟 + 𝐴𝑏𝑙𝑑𝑃ℎ𝑝 + 𝑃𝑖𝑛𝑓 + 𝑃𝑒𝑛𝑣

− 𝐼𝑇𝐶𝑝𝑣 − 𝐼𝑇𝐶𝑖𝑛𝑓 − 𝐴𝑤𝑎𝑙𝑙𝛥𝑅𝑤𝑎𝑙𝑙𝐼𝑇𝐶𝑅

− 𝐴𝑟𝑜𝑜𝑓𝛥𝑅𝑟𝑜𝑜𝑓 𝐼𝑇𝐶𝑅] × 𝐶𝑅𝐹 (𝑖,𝑁), (25)

here 𝑃𝑘 is the unit installation cost for a given system. For PV
ollectors 𝑃𝑝𝑣 [$m−2] is given per unit collector area; for WT 𝑃𝑤𝑡 [$m−2]
s given per unit swept area of wind; for ST collectors 𝑃𝑠𝑡 [$m−2] is
iven per unit collector area; for BITES 𝑃𝑏𝑖𝑡𝑒𝑠 [$m−3] is given per unit
olume; for PCM 𝑃𝑝𝑐𝑚 [$m−3] is given per unit volume; for cool roofs
𝑐𝑟 [$m−2] is given per unit roof area; for HP 𝑃ℎ𝑝 [$m−2] is given per
nit building footprint area; for infiltration/exfiltration 𝑃𝑖𝑛𝑓 [$] is a one
ime cost for improving the air tightness; for the building envelop 𝑃𝑒𝑛𝑣
$] is calculated by knowing the price associated with increasing the
hermal resistance of walls and roofs such that

𝑒𝑛𝑣 = 𝐴𝑤𝑎𝑙𝑙𝛥𝑅𝑤𝑎𝑙𝑙𝑃𝑤𝑎𝑙𝑙 + 𝐴𝑟𝑜𝑜𝑓𝛥𝑅𝑟𝑜𝑜𝑓𝑃𝑟𝑜𝑜𝑓 , (26)

here 𝑃𝑤𝑎𝑙𝑙 and 𝑃𝑟𝑜𝑜𝑓 [$m−4K−1W] are the prices for increasing ther-
al resistance values for the wall and roof. The rebates for building

ystem retrofits are given by 𝐼𝑇𝐶𝑝𝑣 [$] for PV, 𝐼𝑇𝐶𝑖𝑛𝑓 [$] for reducing
uilding infiltration/exfiltration by improving air tightness, and 𝐼𝑇𝐶𝑅
$m−4K−1W] by increasing the thermal resistance values of the envelop.

The annualized cost of fuel consumption (natural gas), for both the
ase and retrofitted systems, should be calculated by factoring in the

2 www150.statcan.gc.ca/ (accessed 13 March 2023).
3 https://www.macrotrends.net/countries/CAN/canada/inflation-rate-cpi/

accessed 13 March 2023).
18
annual rate of increase in fuel price 𝑗𝐺 and the present worth factor
𝑃𝑊 𝐹 (𝑖, 𝑘), given by [5,65]

𝐺𝐵 =

( 𝑁
∑

𝑘=1
𝐴𝑏𝑙𝑑 (𝐺ℎ𝐵 + 𝐺𝑤ℎ𝐵)𝑃𝐺(1 + 𝑗𝐺)𝑘𝑃𝑊 𝐹 (𝑖, 𝑘)

)

𝐶𝑅𝐹 (𝑖,𝑁), (27)

𝐶𝐺 =

( 𝑁
∑

𝑘=1
𝐴𝑏𝑙𝑑 (𝐺ℎ + 𝐺𝑤ℎ)𝑃𝐺(1 + 𝑗𝐺)𝑘𝑃𝑊 𝐹 (𝑖, 𝑘)

)

𝐶𝑅𝐹 (𝑖,𝑁), (28)

𝑃𝑊 𝐹 (𝑖, 𝑘) = 1
(1 + 𝑖)𝑘

, (29)

where 𝐺ℎ𝐵 and 𝐺𝑤ℎ𝐵 [m3m−2] are total annual gas consumption per
building footprint area required for space and water heating of the
base case, respectively, 𝐺ℎ and 𝐺𝑤ℎ [m3m−2] are total annual gas
onsumption per building footprint area required for space and water
eating of the retrofitted system, respectively, and 𝑃𝐺 [$m−3] is the
urrent fuel price per cubic meter at standard pressure.

The annualized cost of electricity consumption for the base system
hould be calculated by factoring in the annual rate of increase in
lectricity price 𝑗𝐸

𝐸𝐵 =

( 𝑁
∑

𝑘=1
𝐴𝑏𝑙𝑑 (𝐸𝑐𝐵 + 𝐸𝑑𝐵)𝑃𝐸 (1 + 𝑗𝐸 )𝑘𝑃𝑊 𝐹 (𝑖, 𝑘)

)

𝐶𝑅𝐹 (𝑖,𝑁), (30)

here 𝐸𝑐𝐵 and 𝐸𝑑𝐵 [kW − hrm−2] are total annual electricity consump-
ion per building footprint area required for space cooling and domestic
se of the base case, respectively, and 𝑃𝐸 [$kW − hr−1] is the current
lectricity price.

The annualized cost of electricity consumption for the retrofitted
ystem should consider more terms that relate to electricity required
or heating by the HP 𝐸ℎ [kW − hrm−2] and electricity generated by the
V collector 𝐸𝑝𝑣 [kW − hrm−2] and WT 𝐸𝑤𝑡 [kW − hrm−2] such that

𝐸 =

( 𝑁
∑

𝑘=1
𝐴𝑏𝑙𝑑 (𝐸ℎ + 𝐸𝑐 + 𝐸𝑑 − 𝐸𝑝𝑣 − 𝐸𝑤𝑡) × 𝑃𝐸

× (1 + 𝑗𝐸 )𝑘 × 𝑃𝑊 𝐹 (𝑖, 𝑘)

)

𝐶𝑅𝐹 (𝑖,𝑁). (31)

https://www150.statcan.gc.ca/
https://www.macrotrends.net/countries/CAN/canada/inflation-rate-cpi/
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The annualized marginal cost of operation and maintenance for the
base system is set to 𝐶𝑂𝑀𝐵 = 1 [$m−2], which is lower than the same
cost for the retrofitted system, given by

𝐶𝑂𝑀 = 𝐴𝑝𝑣𝑂𝑀𝑝𝑣 + 𝐴𝑤𝑡𝑂𝑀𝑤𝑡 + 𝐴𝑠𝑡𝑂𝑀𝑠𝑡 + 𝑉𝑏𝑖𝑡𝑒𝑠𝑂𝑀𝑏𝑖𝑡𝑒𝑠

+ 𝑉𝑝𝑐𝑚𝑂𝑀𝑝𝑐𝑚 + 𝐴𝑏𝑙𝑑𝑂𝑀ℎ𝑝 + 𝑂𝑀𝑐𝑟, (32)

where 𝑂𝑀𝑝𝑣 [$m−2] is operation and maintenance cost for the PV
ystem per unit panel area; 𝑂𝑀𝑤𝑡 [$m−2] is cost for WT per unit swept
rea of wind; 𝑂𝑀𝑠𝑡 [$m−2] is cost for ST collector per unit collector
rea; 𝑂𝑀𝑏𝑖𝑡𝑒𝑠 [$m−3] is cost for BITES per unit volume; 𝑂𝑀𝑝𝑐𝑚 [$m−3]
s cost for PCM per unit volume; 𝑂𝑀ℎ𝑝 [$m−2] is cost for HP per unit
uilding footprint area; and 𝑂𝑀𝑐𝑟 [$] is cost of repair for the cool roof.

The annualized revenue by salvaging the building components can
e calculated by assuming a salvage factor, 𝐹𝑆𝐵 or 𝐹𝑆 for the base
nd retrofitted systems, respectively, and applying the 𝑃𝑊 𝐹 (𝑖,𝑁) and
𝑅𝐹 (𝑖,𝑁) for the full period of 𝑁 years

𝑆𝐵 = 𝐹𝑆𝐵 × 𝐶𝐼𝐵 × 𝑃𝑊 𝐹 (𝑖,𝑁) × 𝐶𝑅𝐹 (𝑖,𝑁), (33)

𝑆 = 𝐹𝑆 × 𝐶𝐼 × 𝑃𝑊 𝐹 (𝑖,𝑁) × 𝐶𝑅𝐹 (𝑖,𝑁). (34)

Table 8 shows the constants used in the economic analysis. The
alues are retrieved and justified from a study by Aliabadi et al. [5].
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